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INTRODUCTION

The Hybrid High-Order (HHO) method
m Introduced in 2014 for the linear diffusion & elasticity (pi Pietro, Ern, Lemaire 2014; DP, E 2015)
m Extended to nonlinear mechanics, electromagnetism, Stokes, fluid mechanics...

Links with other methods

m Bridged to Hybridizable Discontinuous Galerkin HDG (cockburn, Di Pietro, Ern 2016)
m and to Nonconforming Virtual elements ncVEM

m Same devising principle as weak Galerkin WG (wang, Ye 2013) but with optimal
stabilisation

Characteristics of HHO

m Hybrid unknowns
» face and cells unknowns

m Reconstructed gradient and stabilisation
m High order of convergence
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a INTRODUCTION

Advantages of HHO

m HHO vs FE

» Support of polyhedral meshes — natural use for adaptive mesh refinement
> Locking-free method (elasticity)
» Cell mass matrix is naturally block diagonal

m HHO vs DG

» Nonlinear flux is manipulated on the cells only
» Symmetric formulation for nonlinear problems

m High Order — efficient to counter dispersion

Refinment

® Node ® Node O Hanging node
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Diffusion problems

Linear wave equation

Explicit time integration

Numerical results

Nonlinear wave equation

18



Cea

DE LA RECHERCHE A L'INDUSTRIE

DIFFUSION PROBLEMS




a HHO METHOD FOR DIFFUSION PROBLEM

Problem

Mesh

Let C be a polyhedral subdivision of domain Q with
mcellsCec
m facesF € F

hc : diameter of a cell C.

h : maximum of all cell diameters hc.

uc : diffusion coefficient, cell-wise constant for simplicity



a DEGREES OF FREEDOM

Discrete space

m Faces : wr € PR(F) and Cells : we € P(C) with [ € {k, R+ 1}

m Dofs ofacell : ¢ = (wc, (Wr)reac) € Uc = PY(C) x X PF(F)
Fcoc

m Dofsin Q +BC's : Wy, € Up o = {((Wc)cec, (Wr)re 7, Wr = O for F € 0Q)}

Degrees of freedom

( J ( J

*

[ J * [ J [ J * K

[ J [ J
k=o,=0 k=o0,l=1




a GRADIENT RECONSTRUCTION

Goal : Reconstruct locally a gradient G¢(0c) consistent with faces and cells DOFs
Definition

Gc(l)c) 8 Z/?C = VPk+1(C) defined for all flc = (Uc, (UF)FEGC) € Zfoc,
(Ge(bc), Vw), = (Vue, VW) + (Usc — Ucjac, VWjac - ac, Yw € PR(C)

mimics integration by parts in C.
One can also define a potential reconstruction operator pc(ic) € P*+1(C) which verifies

Vpe(iic) = Ge(iic), /C pe(ic) = /C ue



a STABILISATION OPERATOR

Goal : Enforce in a weak manner the following consistency condition

d(V) = Ver —VF~0

Mixed-order (Lehrenfeld-Schoberl stabilisation for HDG)

se(Ue,we) == > HE (nﬁ(S(v),wﬁa(w))F

Without rrf : plain least-squares stabilisation — suboptimal (often used in WG).

Equal-order

se(VeWie) = > 2 (wE(6(v) = (1 = mE)pe(0,6(v)), E(6(w) — (1 = m)pe(0, 5(W))) ),
Feac

m First stabilisation using the reconstructed gradient in HDG context
m More costly than the mixed-order case
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a GLOBAL FORMULATION

Discrete formulation

Op € U o such that , > ~(ucGe(lic), Ge(We))e + sc(lic, We) = Y (f, we)c, Vi € Un o
cec cec

& &[] (5]
Arec Arr Ur o |’

with A = K + S (K stiffness, S stabilisation)

Algebraic formulation

Static condensation

w Using the block-diagonal structure of Acc
(Aff - A}'CAE(;AC}‘) Uz = Gz

w Once Ur is computed, Uc is obtained by a local post-processing



a ERROR ANALYSIS

Energy norm (Di Pietro, Ern, Lemaire 2014)

Letu € H3(2) and Oy, € U o be the continuous and discrete solutions. Assume u € HF+2(C).
Then

IVu = Ge(@n)lli2(y S h*H MUl sz

with Gc(ﬁh)‘c = Gc(ac) vC eC.

L2 norm

Under the same assumptions, elliptic regularity and f € H'(Q) if k = o,

k
<Sh +2||u||Hk+2(C)

HWC(U Sz
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a WAVE EQUATION

fV-(qu):f inQxJ

Ujt—o; OtlUt—o0 = Uo,Vo  iN Q
u=o0 on 092 x J
with f € C°(J; L>(Q2)), Uo, Vo € HL(Q) and J := [0; Ty].

Space semi-discrete problem

Find Op (-, t) € C2(J; U o) such that, for all W, € Uy o and all t € J

(Buc (-, t),we)a |+ Y (1eGe(lic(-, 1), Ge(We))c + Sc(fic(-, 1), We) = (f, we)a

cec

Error analysis (Burman, Duran, Ern, Steins, 2020)

Let u be the continuous solution and &, the space semi-discrete solution.

[10e(u — UC)||L°°(};L2) +[IVu = Ge(Oh)llLoe g2y S hk+t (”U”LOO(J;HhH) + T||6t”||L°°(};Hk+z))



a ALGEBRAIC FORMULATION

Semi discrete equation

[ Mce O } (asuc(t)) +{ Acc Acr } (Uc(f)> . [ Fe(t) ] Vtel.

o o Arc Arr | \Ux(t) o

Problem
The second equation induces a static coupling between cell and face unknowns
ArrUx(t) = —AzcUc(t)
m Possibility to write the problem as first-order problem and remove the static
coupling in the mixed-order case (Burman, buran, Ern 2022)

m In first-order formulation, stabilisation dissipates exact energy, whereas in
second-order formulation a discrete energy in conserved.




Cea

DE LA RECHERCHE A L'INDUSTRIE

EXPLICIT TIME INTEGRATION




a EXPLICIT TIME INTEGRATION

Leapfrog scheme

Discretize J in N 4+ 1time nodes t°, t", ..., tV.

1 [ Mee o ] (Uit —2aun + U 4| Acc Acr ug\ _ | Fé
At? 0 0 Arc Arr U’ (o)

. n+1 n
unknowns : U™ and U’

This is solved in two steps :
X Solving the coupling problem between the cell and the face unknowns

ArrU% = —ArcUp

v The "evolution" equation on the cells unknowns at time t"*" with the mass matrix
M which is block-diagonal

MU = Fp + Mc(2Ug — U ") — AP (AccUg + AcrUT)
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a ITERATIVE SPLITTING ON THE FACES

Mixed-order

ArFU% = (Krr +Srr)U%s = —AxcUe
is transformed into iterated problems (S =7 is block-diagonal)

n—1,m n n—1,m—1
S]:]:U]_- = —A}-CUC — K]:]:U}-

Equal-order

’
ArrUr = (Krr + S5z +Spp)UF = —ArcUg
is transformed into iterated problems
n—1,m—1

— !
FrUF " = —ArcUl — (Krr +Sz7)U%

with Sz7 = S% » + S’ and S% - block-diagonal.

Analysis

This iterative splitting is equivalent to a Neumann series to invert A = .
m Condition on the spectral radius S . Kz < 1(or S5 (Krx + §'ff) <1).
m This condition can be achieved by scaling S by 3 large enough.
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SCALING OF STABILISATION

m (3 is lower bounded by a value 3* independent of h
> j* depends on the trace constant Cy s.t. ||v||r < CerhZ"/|[v]|c, Vv € PR(C)
> 3* depends on k and the mesh regularity
m In practice 8* is computed on a coarse mesh with Neumann boundary conditions
m Mild overestimation on reasonably fine meshes with Dirichlet conditions

m Analytical solution
u(x,y,t) = tsin(nx) sin(ry)
m Q=[0;1]
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Figure. - [2-error convergence curves : hf+2
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SCALING OF STABILISATION

m 3 is lower bounded by a value 8* independent of h

> j* depends on the trace constant Cy s.t. ||v||r < Cerh"/?|[v]|c, Vv € PR(C)
» [3* depends on R and the mesh regularity
m In practice 8* is computed on a coarse mesh with Neumann boundary conditions

m Mild overestimation on reasonably fine meshes with Dirichlet conditions

Analytical solution

u(x,y,t) = t2sin(wx) sin(wy)
Q = [0;1]?

Fixed number of iterations
(1,5,12)

B =1.58*
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Figure. - HHO1 L2-error : truncated splitting

14

18



cea WAVE PROPAGATION

Wave propagation in heterogeneous domain with Dirac source at S.

Analytical solution available until the reflections from the boundaries reached the sensor

(Gar6more2D, Diaz & Abdelaaziz, open-source on Gitlab )
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https://gitlab.inria.fr/jdiaz/gar6more2d/-/tree/master

cea WAVE PROPAGATION

Wave propagation in heterogeneous domain with Dirac source at S.
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cea WAVE PROPAGATION

Wave propagation in heterogeneous domain with Dirac source at S.
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EXPLICIT TIME INTEGRATION

m Application to nonlinear wave equation,
Bu—V - (Vu)Vu) =f

with o(g) = (|92 +0.1)%", p € (1; o).
m Nonlinear stiffness term but linear stabilisation

1 { Mcc © } (ug+1 —2ug+ugf1>+<Kc(U’c;,U”Jnr)>+[ See
At? o 0 : K}"(ch U}‘) Sxe
m Static coupling solved with Newton or with splitting :
SFrULT™ = —Kz(UE,UE"""") — SpcUl

Scr
Srr

I(

16

Ue
Ux

;)

|

F"
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a EXPERIMENT SETTING

Square domain [0; 1], Cartesian mesh, convergence condition on the splitting, 4 MPI
processes on PC.

Measure value over time at a fixed point (0.5,0.5) and compare to the value on a more
refined mesh (no analytical solution).

Vo(X,y) = cos(mx) cos(my),Uo = O,f =0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure. - Expected solutions, p = 1.5,2.1,3, 5,10
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a NEWTON VS SPLITTING

m Measure value over time at (0.5,0.5) and compare to the value on a more refined
mesh (no analytical solution) : error less than 0.1% for 8 € [10, 100]

v More gain with larger 3
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Figure. — computation times p = 3, h = 0.03, HHO1+,HHO2+, HHO3+
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a NEWTON VS SPLITTING

m Measure value over time at (0.5,0.5) and compare to the value on a more refined
mesh (no analytical solution) : error less than 0.1% for 8 € [10, 100]

v More gain with larger 38
v More gain with larger meshes
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Figure. - HHO1+ :

computation times p = 3, h € {0.03,0.02,0.01}
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NEWTON VS SPLITTING

m Measure value over time at (0.5,0.5) and compare to the value on a more refined
mesh (no analytical solution) : error less than 0.1% for 8 € [10, 100]

v More gain with larger 38
v More gain with larger meshes
v More gain with larger p
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Figure. - HHO1+ : computation times h = 0.01, p € {2.1,3,5}
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NEWTON VS SPLITTING

m Measure value over time at (0.5,0.5) and compare to the value on a more refined
mesh (no analytical solution) : error less than 0.1% for 8 € [10, 100]

v More gain with larger 38
v More gain with larger meshes
v More gain with larger p

Thank you for your attention
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