An explicit HHO method for the wave equation

 ECCOMAS CONGRESS 2022Morgane Steins ${ }^{\dagger, *}$ collaboration with Alexandre Ern * and Olivier Jamond ${ }^{\dagger}$
7th of June 2022
${ }^{\dagger}$ CEA Saclay - DES/ISAS/DM2S/SEMT/DYN

* CERMICS (ENPC) \& INRIA Paris

Introduction

The Hybrid High-Order (HHO) method

- Introduced in 2014 for the linear diffusion \& elasticity (Di Pietro, Ern, Lemaire 2014; DP, E 2015)
- Extended to nonlinear mechanics, electromagnetism, Stokes, fluid mechanics...

Links with other methods

- Bridged to Hybridizable Discontinuous Galerkin HDG (cockburn, Di Pietro, Ern 2016)
- and to Nonconforming Virtual elements ncVEM

■ Same devising principle as weak Galerkin WG (Wang, Ye 2013) but with optimal stabilisation

Characteristics of HHO

- Hybrid unknowns
- face and cells unknowns
- Reconstructed gradient and stabilisation
- High order of convergence

Introduction

Advantages of HHO

■ HHO vs FE

- Support of polyhedral meshes \rightarrow natural use for adaptive mesh refinement
- Locking-free method (elasticity)
- Cell mass matrix is naturally block diagonal

■ HHO vs DG

- Nonlinear flux is manipulated on the cells only
- Symmetric formulation for nonlinear problems
- High Order \rightarrow efficient to counter dispersion

- Node

- Node ○ Hanging node

CONTENTS

1 Diffusion problems

2 Linear wave equation

3 Explicit time integration

4 Numerical results

5 Nonlinear wave equation

DE LA RECHERCHE À L'INDUSTRIE

DIFFUSION PROBLEMS

HHO METHOD FOR DIFFUSION PROBLEM

Problem

$$
\left\{\begin{aligned}
-\nabla \cdot(\mu \nabla u) & =f & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Mesh

Let \mathcal{C} be a polyhedral subdivision of domain Ω with

- cells $C \in \mathcal{C}$
- faces $F \in \mathcal{F}$
h_{C} : diameter of a cell C.
h : maximum of all cell diameters h_{C}.
μ_{C} : diffusion coefficient, cell-wise constant for simplicity

DEGREES OF FREEDOM

Discrete space

- Faces : $w_{F} \in P^{k}(F)$ and Cells : $w_{C} \in P^{l}(C)$ with $l \in\{k, k+1\}$
- Dofs of a cell : $\hat{w}_{C}=\left(w_{C},\left(w_{F}\right)_{F \in \partial C}\right) \in \hat{\mathcal{U}}_{C}=P^{l}(C) \times \underset{F \subset \partial C}{ } \times P^{k}(F)$
- Dofs in $\Omega+\mathbf{B C}$'s $: \hat{w}_{h} \in \hat{\mathcal{U}}_{h, 0}=\left\{\left(\left(w_{C}\right)_{C \in \mathcal{C}},\left(w_{F}\right)_{F \in \mathcal{F}}, w_{F}=0\right.\right.$ for $\left.\left.F \in \partial \Omega\right)\right\}$

Degrees of freedom

Gradient reconstruction

Goal : Reconstruct locally a gradient $G_{C}\left(\hat{u}_{C}\right)$ consistent with faces and cells DOFs

Definition

$$
\begin{aligned}
G_{C}\left(\hat{u}_{C}\right): & \hat{\mathcal{U}}_{C} \rightarrow \nabla \mathcal{P}^{k+1}(C) \text { defined for all } \hat{u}_{C}=\left(u_{C},\left(u_{F}\right)_{F \in \partial C}\right) \in \hat{\mathcal{U}}_{C} \\
& \left(G_{C}\left(\hat{u}_{C}\right), \nabla w\right)_{C}=\left(\nabla u_{C}, \nabla w\right)_{C}+\left(u_{\partial C}-u_{C \mid \partial C}, \nabla w_{\mid \partial C} \cdot \vec{n}\right)_{\partial C}, \forall w \in \mathcal{P}^{k+1}(C)
\end{aligned}
$$

mimics integration by parts in C.
One can also define a potential reconstruction operator $p_{C}\left(\hat{u}_{C}\right) \in \mathcal{P}^{k+1}(C)$ which verifies

$$
\nabla p_{C}\left(\hat{u}_{C}\right)=G_{C}\left(\hat{u}_{C}\right), \quad \int_{C} p_{C}\left(\hat{u}_{C}\right)=\int_{C} u_{C}
$$

STABILISATION OPERATOR

Goal : Enforce in a weak manner the following consistency condition

$$
\delta(v)=v_{C \mid F}-v_{F} \simeq 0
$$

Mixed-order (Lehrenfeld-Schöberl stabilisation for HDG)

$$
s_{C}\left(\hat{v}_{C}, \hat{w}_{C}\right):=\sum_{F \in \partial C} \frac{\mu_{C}}{h_{C}}\left(\pi_{F}^{k} \delta(v), \pi_{F}^{k} \delta(w)\right)_{F}
$$

Without π_{F}^{k} : plain least-squares stabilisation \rightarrow suboptimal (often used in WG).

Equal-order

$$
s_{C}\left(\hat{v}_{C}, \hat{w}_{C}\right)=\sum_{F \in \partial C} \frac{\mu_{C}}{h_{C}}\left(\pi_{F}^{k}\left(\delta(v)-\left(I-\pi_{C}^{k}\right) p_{C}(o, \delta(v))\right), \pi_{F}^{k}\left(\delta(w)-\left(I-\pi_{C}^{k}\right) p_{C}(o, \delta(w))\right)\right)_{F}
$$

- First stabilisation using the reconstructed gradient in HDG context
- More costly than the mixed-order case

GLOBAL FORMULATION

Discrete formulation

$$
\hat{u}_{h} \in \hat{\mathcal{U}}_{h, 0} \text { such that }, \sum_{C \in \mathcal{C}}\left(\mu_{C} G_{C}\left(\hat{u}_{C}\right), G_{C}\left(\hat{w}_{C}\right)\right)_{C}+s_{C}\left(\hat{u}_{C}, \hat{w}_{C}\right)=\sum_{C \in \mathcal{C}}\left(f, w_{C}\right)_{C}, \forall \hat{w}_{h} \in \hat{\mathcal{U}}_{h, 0}
$$

Algebraic formulation

$$
\left[\begin{array}{cc}
\mathbb{A}_{\mathcal{C C}} & \mathbb{A}_{\mathcal{C F}} \\
\mathbb{A}_{\mathcal{F C}} & \mathbb{A}_{\mathcal{F F}}
\end{array}\right]\left[\begin{array}{c}
U_{\mathcal{C}} \\
U_{\mathcal{F}}
\end{array}\right]=\left[\begin{array}{c}
F_{\mathcal{C}} \\
0
\end{array}\right]
$$

with $\mathbb{A}=\mathbb{K}+\mathbb{S}(\mathbb{K}$ stiffness, \mathbb{S} stabilisation)

Static condensation

U" Using the block-diagonal structure of $\mathbb{A}_{\mathcal{C C}}$

$$
\left(\mathbb{A}_{\mathcal{F F}}-\mathbb{A}_{\mathcal{F C}} \mathbb{A}_{\mathcal{C}}^{-1} \mathbb{A}_{\mathcal{C F}}\right) U_{\mathcal{F}}=\tilde{F}_{\mathcal{F}}
$$

Once $U_{\mathcal{F}}$ is computed, $U_{\mathcal{C}}$ is obtained by a local post-processing

ERROR ANALYSIS

Energy norm (Di Pietro, Ern, Lemaire 2014)

Let $u \in H_{0}^{1}(\Omega)$ and $\hat{u}_{h} \in \hat{\mathcal{U}}_{h, 0}$ be the continuous and discrete solutions. Assume $u \in H^{k+2}(\mathcal{C})$. Then

$$
\left\|\nabla u-G_{\mathcal{C}}\left(\hat{u}_{h}\right)\right\|_{L^{2}(\Omega)} \lesssim h^{k+1}\|u\|_{H^{k+2}(\mathcal{C})} .
$$

with $G_{\mathcal{C}}\left(\hat{u}_{h}\right)_{\mid C}=G_{C}\left(\hat{u}_{C}\right) \quad \forall C \in \mathcal{C}$.

L^{2} norm

Under the same assumptions, elliptic regularity and $f \in H^{1}(\Omega)$ if $k=0$,

$$
\left\|\pi_{\mathcal{C}}^{l}(u)-u_{\mathcal{C}}\right\|_{L^{2}(\Omega)} \lesssim h^{k+2}\|u\|_{H^{k+2}(\mathcal{C})}
$$

DE LA RECHERCHE À L'INDUSTRIE

LINEAR WAVE EQUATION

WAVE EQUATION

$$
\left\{\begin{aligned}
\boxed{\partial_{t}^{2} u}-\nabla \cdot(\mu \nabla u) & =f & & \text { in } \Omega \times J \\
u_{\mid t=0}, \partial_{t} u_{t=0} & =u_{0}, v_{0} & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \times J
\end{aligned}\right.
$$

with $f \in C^{0}\left(J ; L^{2}(\Omega)\right), u_{0}, v_{0} \in H_{0}^{1}(\Omega)$ and $J:=\left[0 ; T_{f}\right]$.

Space semi-discrete problem

Find $\hat{u}_{h}(\cdot, t) \in C^{2}\left(J ; \hat{\mathcal{U}}_{h, 0}\right)$ such that, for all $\hat{w}_{h} \in \hat{\mathcal{U}}_{h, 0}$ and all $t \in J$

$$
\left(\partial_{t}^{2} u_{\mathcal{C}}(\cdot, t), w_{\mathcal{C}}\right)_{\Omega}+\sum_{C \in \mathcal{C}}\left(\mu_{C} G_{C}\left(\hat{u}_{C}(\cdot, t), G_{C}\left(\hat{w}_{C}\right)\right)_{C}+s_{C}\left(\hat{u}_{C}(\cdot, t), \hat{w}_{C}\right)=\left(f, w_{\mathcal{C}}\right)_{\Omega}\right.
$$

Error analysis (Burman, Duran, Ern, Steins, 2020)

Let u be the continuous solution and \hat{u}_{h} the space semi-discrete solution.

$$
\left\|\partial_{t}\left(u-u_{\mathcal{C}}\right)\right\|_{L^{\infty}\left(j ; L^{2}\right)}+\left\|\nabla u-G_{\mathcal{C}}\left(\hat{u}_{h}\right)\right\|_{L^{\infty}\left(j ; L^{2}\right)} \lesssim h^{k+1}\left(\|u\|_{L^{\infty}\left(j ; H^{k+2}\right)}+T\left\|\partial_{t} u\right\|_{L \infty\left(j ; H^{k+2}\right)}\right)
$$

Algebraic formulation

Semi discrete equation

$$
\left[\begin{array}{cc}
\mathbb{M}_{\mathcal{C C}} & 0 \\
0 & 0
\end{array}\right]\binom{\partial_{t}^{2} U_{\mathcal{C}}(t)}{\cdot}+\left[\begin{array}{cc}
\mathbb{A}_{\mathcal{C C}} & \mathbb{A}_{\mathcal{C F}} \\
\mathbb{A}_{\mathcal{F C}} & \mathbb{A}_{\mathcal{F F}}
\end{array}\right]\binom{U_{\mathcal{C}}(t)}{U_{\mathcal{F}}(t)}=\left[\begin{array}{c}
F_{\mathcal{C}}(t) \\
0
\end{array}\right] \quad \forall t \in J
$$

Problem

The second equation induces a static coupling between cell and face unknowns

$$
\mathbb{A}_{\mathcal{F} \mathcal{F}} U_{\mathcal{F}}(t)=-\mathbb{A}_{\mathcal{F} \mathcal{C}} U_{\mathcal{C}}(t)
$$

- Possibility to write the problem as first-order problem and remove the static coupling in the mixed-order case (Burman, Duran, Ern 2022)
- In first-order formulation, stabilisation dissipates exact energy, whereas in second-order formulation a discrete energy in conserved.

DE LA RECHERCHE À L'INDUSTRIE

EXPLICIT TIME INTEGRATION

EXPLICIT TIME INTEGRATION

Leapfrog scheme

Discretize J in $N+1$ time nodes $t^{0}, t^{1}, \ldots, t^{N}$.

$$
\frac{1}{\Delta t^{2}}\left[\begin{array}{cc}
\mathbb{M}_{\mathcal{C C}} & 0 \\
0 & 0
\end{array}\right]\left(U_{\mathcal{C}}^{n+1}-2 U_{\mathcal{C}}^{n}+U_{\mathcal{C}}^{n-1}\right)+\left[\begin{array}{cc}
\mathbb{A}_{\mathcal{C C}} & \mathbb{A}_{\mathcal{C F}} \\
\mathbb{A}_{\mathcal{F C}} & \mathbb{A}_{\mathcal{F F}}
\end{array}\right]\binom{U_{\mathcal{C}}^{n}}{U_{\mathcal{F}}^{n}}=\left[\begin{array}{c}
F_{\mathcal{C}}^{n} \\
0
\end{array}\right]
$$

unknowns: $U_{\mathcal{C}}^{n+1}$ and $U_{\mathcal{F}}^{n}$.
This is solved in two steps:
x Solving the coupling problem between the cell and the face unknowns

$$
\mathbb{A}_{\mathcal{F} \mathcal{F}} U_{\mathcal{F}}^{n}=-\mathbb{A}_{\mathcal{F} \mathcal{C}} U_{\mathcal{C}}^{n}
$$

\checkmark The "evolution" equation on the cells unknowns at time t^{n+1} with the mass matrix $\mathbb{M}_{\mathcal{C C}}$ which is block-diagonal

$$
\mathbb{M}_{\mathcal{C C}} U_{\mathcal{C}}^{n+1}=F_{\mathcal{C}}^{n}+\mathbb{M}_{\mathcal{C}}\left(2 U_{\mathcal{C}}^{n}-U_{\mathcal{C}}^{n-1}\right)-\Delta t^{2}\left(\mathbb{A}_{\mathcal{C C}} U_{\mathcal{C}}^{n}+\mathbb{A}_{\mathcal{C} F} U_{\mathcal{F}}^{n}\right)
$$

ITERATIVE SPLITTING ON THE FACES

Mixed-order

$$
\mathbb{A}_{\mathcal{F} \mathcal{F}} U_{\mathcal{F}}^{n}=\left(\mathbb{K}_{\mathcal{F} \mathcal{F}}+\mathbb{S}_{\mathcal{F} \mathcal{F}}\right) U_{\mathcal{F}}^{n}=-\mathbb{A}_{\mathcal{F} \mathcal{C}} \cup_{\mathcal{C}}^{n}
$$

is transformed into iterated problems ($\mathbb{S}_{\mathcal{F} \mathcal{F}}$ is block-diagonal)

$$
\mathbb{S}_{\mathcal{F F}} U_{\mathcal{F}}^{n-1, m}=-\mathbb{A}_{\mathcal{F} \mathcal{C}} U_{\mathcal{C}}^{n}-\mathbb{K}_{\mathcal{F} \mathcal{F}} U_{\mathcal{F}}^{n-1, m-1}
$$

Equal-order

$$
\mathbb{A}_{\mathcal{F} \mathcal{F}} U_{\mathcal{F}}^{n}=\left(\mathbb{K}_{\mathcal{F} \mathcal{F}}+\mathbb{S}_{\mathcal{F} \mathcal{F}}^{\star}+\mathbb{S}_{\mathcal{F} \mathcal{F}}^{\prime}\right) U_{\mathcal{F}}^{n}=-\mathbb{A}_{\mathcal{F} \mathcal{C}} U_{\mathcal{C}}^{n}
$$

is transformed into iterated problems

$$
\mathbb{S}_{\mathcal{F} \mathcal{F}}^{\star} U_{\mathcal{F}}^{n-1, m}=-\mathbb{A}_{\mathcal{F} \mathcal{C}} U_{\mathcal{C}}^{n}-\left(\mathbb{K}_{\mathcal{F} \mathcal{F}}+\mathbb{S}_{\mathcal{F} \mathcal{F}}^{\prime}\right) U_{\mathcal{F}}^{n-1, m-1}
$$

with $\mathbb{S}_{\mathcal{F} \mathcal{F}}=\mathbb{S}_{\mathcal{F} \mathcal{F}}^{\star}+\mathbb{S}_{\mathcal{F} \mathcal{F}}^{\prime}$ and $\mathbb{S}_{\mathcal{F} \mathcal{F}}^{\star}$ block-diagonal.

Analysis

This iterative splitting is equivalent to a Neumann series to invert $\mathbb{A}_{\mathcal{F} \mathcal{F}}$.
■ Condition on the spectral radius $\mathbb{S}_{\mathcal{F} \mathcal{F}}^{-1} \mathbb{K}_{\mathcal{F F}}<1\left(\operatorname{or} \mathbb{S}_{\mathcal{F} \mathcal{F}}^{-\star}\left(\mathbb{K}_{\mathcal{F F}}+\mathbb{S}_{\mathcal{F} \mathcal{F}}^{\prime}\right)<1\right)$.

- This condition can be achieved by scaling \mathbb{S} by β large enough.

DE LA RECHERCHE À L'INDUSTRIE

NUMERICAL RESULTS

SCALING OF STABILISATION

- β is lower bounded by a value β^{\star} independent of h
- β^{\star} depends on the trace constant $C_{\text {tr }}$ s.t. $\|v\|_{F} \leqslant C_{t r} h_{C}^{-1 / 2}\|v\|_{C}, \forall v \in \mathcal{P}^{k}(C)$
- β^{\star} depends on \boldsymbol{k} and the mesh regularity

■ In practice β^{\star} is computed on a coarse mesh with Neumann boundary conditions

- Mild overestimation on reasonably fine meshes with Dirichlet conditions
- Analytical solution $u(x, y, t)=t^{2} \sin (\pi x) \sin (\pi y)$
- $\Omega=[0 ; 1]^{2}$

Figure. - L^{2}-error convergence curves : h^{k+2}

SCALING OF STABILISATION

■ β is lower bounded by a value β^{\star} independent of h

- β^{\star} depends on the trace constant $C_{\text {tr }}$ s.t. $\|v\|_{F} \leqslant C_{\text {tr }} h_{C}^{-1 / 2}\|v\|_{C}, \forall v \in \mathcal{P}^{k}(C)$
- β^{\star} depends on \boldsymbol{k} and the mesh regularity
- In practice β^{\star} is computed on a coarse mesh with Neumann boundary conditions

■ Mild overestimation on reasonably fine meshes with Dirichlet conditions

- Analytical solution $u(x, y, t)=t^{2} \sin (\pi x) \sin (\pi y)$
- $\Omega=[0 ; 1]^{2}$
- Fixed number of iterations $(1,5,12)$
■ $\beta=1.5 \beta^{\star}$

Figure. - HHO1 L ${ }^{2}$-error : truncated splitting

WAVE PROPAGATION

Wave propagation in heterogeneous domain with Dirac source at S.

	$\begin{array}{ll} \rho=1, c=3 & \\ & S\left(0, \frac{2}{3}\right) \\ & \\ & \quad . P_{1}=\left(\frac{1}{3}, \frac{1}{3}\right) \end{array}$
$H=3$	$\rho=1, c=\sqrt{3} \quad \cdot P_{2}=\left(\frac{1}{3},-\frac{1}{3}\right)$

Analytical solution available until the reflections from the boundaries reached the sensor (Gar6more2D, Diaz \& Abdelaaziz, open-source on Gitlab)

WAVE PROPAGATION

Wave propagation in heterogeneous domain with Dirac source at S.

	$\begin{array}{ll} \rho=1, c=3 & \\ & S\left(0, \frac{2}{3}\right) \\ & \\ & \quad P_{1}=\left(\frac{1}{3}, \frac{1}{3}\right) \end{array}$
$H=3$	$\rho=1, c=\sqrt{3} \quad \cdot P_{2}=\left(\frac{1}{3},-\frac{1}{3}\right)$

Measure of the velocity y-component on the same mesh for $\operatorname{HHO}\{1,2,3\}$ (P_{1} left, P_{2} right)

WAVE PROPAGATION

Wave propagation in heterogeneous domain with Dirac source at S.

$H=3$	$\begin{array}{ll} \rho=1, c=3 & \\ & \text { S(0, 年) } \\ & \quad . P_{1}=\left(\frac{1}{3}, \frac{1}{3}\right) \end{array}$
	$\rho=1, c=\sqrt{3} \quad \cdot P_{2}=\left(\frac{1}{3},-\frac{1}{3}\right)$

Measure of the velocity y-component for HHO and FE (same \# DOFs , P_{1} left, P_{2} right)

DE LA RECHERCHE À L'INDUSTRIE

EXPLICIT TIME INTEGRATION

- Application to nonlinear wave equation,

$$
\partial_{t}^{2} u-\nabla \cdot(\alpha(\nabla u) \nabla u)=f
$$

with $\alpha(g)=\left(|g|^{2}+0.1\right)^{\frac{p-2}{2}}, p \in(1 ; \infty)$.

- Nonlinear stiffness term but linear stabilisation

$$
\frac{1}{\Delta t^{2}}\left[\begin{array}{cc}
\mathbb{M}_{\mathcal{C C}} & 0 \\
0 & 0
\end{array}\right]\left(U_{\mathcal{C}}^{n+1}-2 U_{\mathcal{C}}^{n}+U_{\mathcal{C}}^{n-1}\right)+\binom{K_{\mathcal{C}}\left(U_{\mathcal{C}}^{n}, U_{\mathcal{F}}^{n}\right)}{K_{\mathcal{F}}\left(U_{\mathcal{C}}^{n}, U_{\mathcal{F}}^{n}\right)}+\left[\begin{array}{cc}
\mathbb{S}_{\mathcal{C}} & \mathbb{S}_{\mathcal{C F}} \\
\mathbb{S}_{\mathcal{F C}} & \mathbb{S}_{\mathcal{F F}}
\end{array}\right]\binom{U_{\mathcal{C}}^{n}}{U_{\mathcal{F}}^{n}}=\left[\begin{array}{c}
F_{\mathcal{C}}^{n} \\
0
\end{array}\right]
$$

■ Static coupling solved with Newton or with splitting:

$$
\mathbb{S}_{\mathcal{F F}} U_{\mathcal{F}}^{n-1, m}=-K_{\mathcal{F}}\left(U_{\mathcal{C}}^{n}, U_{\mathcal{F}}^{n-1, m-1}\right)-\mathbb{S}_{\mathcal{F} \mathcal{C}} U_{\mathcal{C}}^{n}
$$

EXPERIMENT SETTING

Square domain $[0 ; 1]^{2}$, Cartesian mesh, convergence condition on the splitting, 4 MPI processes on PC.
Measure value over time at a fixed point ($0.5,0.5$) and compare to the value on a more refined mesh (no analytical solution).

$$
v_{0}(x, y)=\cos (\pi x) \cos (\pi y), u_{0}=0, f=0
$$

Figure. - Expected solutions, $p=1.5,2.1,3,5,10$

NEWTON VS SPLITTING

- Measure value over time at ($0.5,0.5$) and compare to the value on a more refined mesh (no analytical solution) : error less than 0.1% for $\beta \in[10,100]$
\checkmark More gain with larger β

Figure. - computation times $p=3, h=0.03, \mathrm{HHO}^{+}, \mathrm{HHO}^{+}$, $\mathrm{HHO}^{+}+$

- Measure value over time at ($0.5,0.5$) and compare to the value on a more refined mesh (no analytical solution) : error less than 0.1% for $\beta \in[10,100]$
\checkmark More gain with larger β
\checkmark More gain with larger meshes

Figure. - HHO1+ : computation times $p=3, h \in\{0.03,0.02,0.01\}$

Newton vs Splitting

- Measure value over time at ($0.5,0.5$) and compare to the value on a more refined mesh (no analytical solution) : error less than 0.1% for $\beta \in[10,100]$
\checkmark More gain with larger β
\checkmark More gain with larger meshes
\checkmark More gain with larger p

Figure. - HHO1+ : computation times $h=0.01, p \in\{2.1,3,5\}$

NEWTON VS SPLITTING

- Measure value over time at ($0.5,0.5$) and compare to the value on a more refined mesh (no analytical solution) : error less than 0.1% for $\beta \in[10,100]$
\checkmark More gain with larger β
\checkmark More gain with larger meshes
\checkmark More gain with larger p

Thank you for your attention

